
*- "cAMQlA ~ r C l 0 ~ ~ ~ -
Unlimited Release
Printed August 1987

/--- SAND85-2344 UC-32

Sandia Software Guidelines

Volume 1
Software Quality Planning

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

P under Contract DE-AC04-76DP00789

SF29000(8-81 I

LI

Issued by Sandia National Laboratories, operated for the IJnited States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulnegs of any information, apparatus, product, or pro-
cess disclosed, o r represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or inlply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. 'The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: A01

.
Distribut iori

Category TIC 32

SAND85-2344
Unlimited Release

Printed August 1987

Sandia Software Guidelines
Volume 1

Software Qual i ty P lann ing

Sand ia Na t iona l Laboratories
Albuquerque, N e w Mex ico 87185

Abstract

This volurnc is one in a sc’ritts of Suridse Softiuare Guidelznes intwdrd for us^ iii

producing quality softwarc within Snndia Nat ioiial Laborat orif’s. In corisorianw
wi th t l i r IEEE St aridarc1 for Software Quality Assuranw Plans. this voliirnc~ idwi-
tifies procPdurc.s to follow iii producing a Software CJiiality Assuraricc Plan for an
orgariizatioii or a yro.ject . arid provides an exaiiiplc project SQA plan.

Quality Endorsement

Sandia National Laboratories’ stated policy of quality of performancc
applies to all aspects of our scientific arid engineering endeavors. This qiicst
for excellence applies equally to our software pursuits and our hardware
products.

The series of documents known as The Sandia Software Guidelines rep-
resents a consensus by software professionals within the Laboratories to
identify and recommend practices that will help produce high-quality soft-
ware. The Design Engineering Directorate publishes these documents. and
the Computing Directorate distributes them. We believe that applying such
guidelines reflects good management principles and practices.

As with the IEEE standards which form the basis for these volumes, tho
Guidelines will undergo periodic review for relevancy and current practices.
We encourage Sandians to take an active part in that process.

e.&- v q v
C. Herman Mauney! Direcbr
Sys tenis Evaluation
Sandia National Laboratories

i

Foreword

This volume is one in a series of Sandia Software Guidelines intended
for use in producing quality software within Sandia National Laboratories.
These guidelines. when used in conjunction with the IEEE Standard for Soft-
ware Quality Assurance Plans, will help ensure that computer programs de-
veloped within the Laboratories are usable, reliable, understandable. main-
tainable, and portable. When complete, the series will consist of the follow-
ing documents:

0 Volume 1: Software Quality Planning (SAND85-2344)
Presents an overview of procedures designed to ensure software quality.
Includes a sample software quality assurance plan for a generic Sandia
project.

0 Volume 2: Documentation (SAND85-2345)
Presents a description of documents needed for developing and main-
taining software projects. Includes sample document outlines for a
generic Sandia software project.

0 Volume 3: Standards, Practices, and Conventions
(SAND85-2346)
Presents consensus standards and practices for developing and niain-
taining quality software at Sandia. Includes recornrnmded deliverablcs
for major phases of the software life cycle.

0 Volume 4: Configuration Management (SAND85-2347)
Presents a methodology for configuration management of Sandia soft-
ware prqjects and their associated tlociimentation.

0 Volume 5: Tools, Techniques, and Methodologies
(SAND85-2348)
Presents evaluations and a directory of software tools arid methodolo-
gies available to Sandia personnel.

11

Acknowledgement

A coIwiisus docnnicnt liktl this volume of the guidelines cannot be
produced without tlic cooperation arid hard work of a great many peo-
ple tliroughout thti organization. The sponsoring CAD Technology Division
wishes to thank the rnernbcrs of the working group who wrote Volume 1.
as well as thc rricnibcm of the balloting group who reviewed and refined it.
Special ac.kriowledgcmcrit is riiade to M. J. Adzija and the members of the
DOEDEF project, who provided the basis for the sample project quality
plan in this dociiment.

Working Group Members. Volume 1

Mikc Blackledge. Chazrperson Merry Peterson (2612)
Sandy 13abb (2854) Jim Rogers (8474)
Gayle ('omor (9211) Suzanne Rountree (2813)
Guy Daliiris (7253) Bill Shepherd (6316)
Pcte Hamilton (9241) Chuck Trauth (7252)
('hnick Millcr (2813) .John Wisniewski (21 13)
Susan Navarro (2822) Arrri Yates (5255)

~ t m rim unient urns przntr:d u.siriq the UTEX c o m p u t e r typese t t ing program
a n d t h e S a n d i n Natzonnl Lahoratortes' Autologrc A P S 5 photo typese t ter .

1 . 2 Y d 5 6 7 8 9 0

...
111

Contents
1 Introduction 1

1.1 Intent . 1
1.2 Environment . 2
1.3 Applicability . 3
1.4 Organization . 3
1.5 How to Use This Manual . 4

2 Software Quality Relationships and Activities
2.1 Quality Assurance. Quality Control. and Audits 5
2.2 An Overview of Quality Assurance Activities 7

2.2.1 Verification and Validation Activities 8
2.2.2 Configuration Management Activities 8
2.2.3 Quality Control Activities 9

2.3 Requirements to Implement an SQA Program 10
2.4 Why have an SQA Program? 11

5

3 Contents of a Software Quality Assurance Plan 13
3.1 Introduction and Program Structure 13

3.1.1 Purpose . 13
3.1.2 Reference Documents 14
3.1.3 Management . 14

3.2 Design Control . 15
3.2.1 Design Information 15
3.2.2 Design Review . 16
3.2.3 Change Control . 17

3.3 Other Quality Factors . 18
3.3.1 Code Control . 18
3.3.2 Media Control . 19
3.3.3 Supplier Control . 20

3.4 Documentation Control . 21
3.4.1 Records Collection . 22
3.4.2 Records Maintenance 22
3.4.3 Records Retention . 23

4 Implementation of a Software Quality Assurance Plan 25
4.1 Acceptance by Management 25
4.2 Acceptance by Development Personnel 26
4.3 Planning for Implementation of the SQAP 26

iv

4.4 Execution of the SQAP . 26

5 Evaluation of a Software Quality Assurance Plan: Guide-
lines 27
5.1 27
5.2 Evaluation of the Plan’s Adminishation 28

Evaluation of the Plan’s Contents

6 Modification of the Software Quality Assurance Plan 30
. 30

. 30
31

. , 32

6.1
6.2
6.3
6.4

Keeping the Plan Current
Reasons for Changing the SQAP
Formality of Change Control , . ,
Methodology for Changes

Appendix A: Example Software Quality Assurance Plan xxxiv

Appendix B: References 47

Appendix C: Glossary and Acronyms 48

Index 50

List of Tables

1 23
2 Records Retention Periods 24
3 28
4 Example SQAP Administration Evaluation Form 29

Example Records for Collection

Example SQAP Content Evaluation Form

V

Software Quality Planning

1 Introduction

Software quality is a goal everyone desires; yet not everyone is in agree-
ment regarding

0 what constitutes software quality,

0 what are the “correct” approaches to achieve it,

0 how much effort and time should be spent to achieve it, and

0 what are definitive measures or review criteria to determine when it
has been achieved.

Management personnel know they want high quality in any software prod-
ucts within their area of control. Software professionals know they want
to produce a quality product. Users are adamant that the software “must
work right - and be reliable!” All want software quality; but how are they
to proceed?

1.1 Intent

As the first volume in a series of Sandia Software Guidelines, this manual is
designed to help individuals - designers, managers, quality assurance per-
sonnel - involved with computer programs and associated documentation
at Sandia National Laboratories proceed toward the goal of high quality
software. The intent of this manual is to provide guidelines to achieve that
quality product. This volume is not intended to provide methods to mea-
sure the effect of these or similar guidelines on the software product. The
guidelines provided here are customized to the environment found within
the Laboratories, as shown in Figure 1.

1

AL 5700.6B

NQA-1, etc. and Policy ?e
IEEE Software

Engineering i Standards

I

Software
Guidelines

I

QA Plans and Procedures
Umbrella SQA Plan Implementing Procedures

Figure 1: The Sandia Software Quality Environment,

1.2 Environment

The Albuquerque Operations Office of the Department of Energy has pub-
lished two top-level policy documents, known as QC-1 and AL 5700.6B.
QC-1 (the DOE/AL Quality Control Policy, [QC85]), prescribes the basic
principles and requirements for quality assurance programs, and AL 5700.6B
(DOE/AL Quality Assurance, [AL84]) assigns responsibility for those qual-
ity programs.

QC-1 calls for a software quality assurance program at the agency level
that establishes strategy, authority, and control. Such a program is to de-
velop verification and validation test plans, change control and configuration
control, documentation, and an audit program. In turn, Sandia has pub-
lished its own Quality Plan [SQP86] which further states that subordinate
quality plans are to be prepared which are appropriate for the nature of the
software or hardware involved. Note that these efforts are aimed at produc-
ing organizational (i. e., policy) quality plans, which are usually less detailed
than project quality plans.

2

The general directorate or department level quality plans should spec-
ify organizational and policy directives. The details of implementing such
plans are left to the division level or project level software quality plans and
their implementing procedures. Some organizations within Sandia have al-
ready produced detailed Quality Plans for Software Development and Main-
tenance. As shown in Figure 1, such quality plans may have external re-
quirements, such as lOCFR50 Appendix B, Quality Assurance Criteria for
Nuclear Power Plants and Fuel Reprocessing Plants, and the expansion given
by ANSI/ASME standard NQA-I. The criteria of such documents seldom all
apply to Sandia. This volume will aid in the preparation of Sandia depart-
ment and division organizational quality plans in general, and will provide
details on producing a Software Quality Assurance Plan for a project within
the Laboratories.

1.3 Applicability

This manual is designed for use by any organization or project developing
or maintaining software, using either Sandia personnel or personnel under
contract to the Laboratories. This document provides guidelines to follow
regardless of the application of the software (e.g., WR (War Reserve) or
non-WR), the programming language, or the size of the developnient or
maintenance effort.

This manual is a set of guidelines, not directives. Enforcement of an ap-
plication of these guidelines must be established at the organizational level,
project level, or individual level, with management support and promotion.
Each individual manager or project leader must make a conscious decision as
to the degree these guidelines will be imposed on an organization or project,
or the appropriate “tailoring” of these guidelines to the organization, project.
and environment at hand. The Sandia Software Quality Assurance Division
may be consulted in making such decisions. Additional references may be
required to provide the technical details and design principles that create
the successful design and implementation environment.

1.4 Organization

Section 2 of the manual deals with software quality activities in general and
describes why the structured approach of a Software Quality Assurance Plan
(SQAP) is recommended. Most of the guidelines are presented in Section
3 , which gives details on producing an SQAP at Sandia. The subsections of
Section 3 are based on the SQAP subsections advocated by IEEE [IEE86]

3

and are grouped according to the quality plan framework criteria suggested
in the Sandia Quality Plan [SQPSS].

Section 4 describes how to encourage Sandians to follow a software qual-
ity plan, while Section 5 addresses the completeness of the SQAP. Finally,
Section 6 describes how to change a software quality assurance plan.

Appendix A is an example plan for a hypothetical Sandia project. Ref-
erences for additional information are marked throughout the volume by
brackets in this manner: [IEE86], with the details on these references listed
in Appendix B. Appendix C provides a glossary of terms. For follow-on
investigation, the book references are available through the Sandia library
system, and AT&T videotapes on software quality are available from the
Sandia Computing Education Center.

1.5 How to Use This Manual

This manual was designed to assist in creating a departmental, division, or
project software quality plan. The user can turn directly to Appendix A and
get an idea of the contents of an SQAP. However, this is but one example
of an SQAP. A user’s plan may need considerable modification depending
on the scope, complexity, and criticality of the application involved. Sug-
gestions on producing each portion of a plan can be obtained by reviewing
Section 3, or by contacting Sandia’s Software Quality Assurance Division.

This manual is designed to be used with the Sandia Software Guidelines,
references [SSGV~] through [SSGV~], which provide details on suggested soft-
ware quality practices at Sandia National Laboratories. In addition, IEEE
references may prove helpful. The IEEE standard [IEE84] provides require-
ments for preparation and content of Software Quality Assurance Plans,
while the IEEE Guide [IEE86] gives some detail on these plans. The IEEE
references are available through Sandia’s Design Information Center or from
the IEEE Computer Society. The IEEE also provides a bound publication
of all of their current software engineering standards.

4

t

2 Software Quality Relationships and Activities

Software quality assurance is achieved by using established guidelines for
quality control to insure the integrity and prolonged life of software. Often
there is some confusion as to the relationships between quality assurance,
quality control, and the auditing function.

2.1

A quality software product is one that

Quality Assurance, Quality Control, and Audits

0 satisfies the customer’s requirements,

0 meets the users’ expectations,

0 has the appropriate level of reliability, and

0 has a logical design and understandable code for ease of maintenance.

Software quality assurance is a planned effort to provide confidence
that a software product possesses the above criteria as well as additional
attributes unique to the project such as portability, efficiency, reusability,
and flexibility, while dealing with constraints based on time, manpower, or
hardware. Quality assurance is the collection of the activities and functions
that are used to monitor and control a software project so that specific
objectives are achieved with the desired level of confidence. SQA is not the
sole responsibility of Sandia’s Software Quality Assurance Division but is
determined by the consensus of the supervisor responsible for the project,
the project leader, the project personnel, the users, and the SQA division.

The objectives of software quality are typically achieved by following
a software quality assurance plan that states the methods the project will
employ to assure the documents or workproducts produced and reviewed
at each milestone are of high quality. Such an explicit approach assures
that quality is not left to the “good intentions” of the individual project
personnel. Although the integrity and capability of the software professional
are the foundation of the project’s quality, a plan manages the actions of
the project personnel to confirm that all steps have been taken to achieve
software quality, and provides management with documentation to confirm
those actions. The plan states the criteria by which quality activities can be
monitored rather than setting impossible goals such as “no software defects”
or “100% totally reliable software.”

5

..__I__-
.. ~. - I ---l..l-^--.-~.^lllll_l~---

Quality control is a part of quality assurance. Quality control con-
sists of well defined checks on a product called out in the QA plan for the
product. For software products, quality control typically includes reviews of
specifications, inspections of code and documents, and checks for existence of
user deliverables. Usually, document and workproduct inspections are con-
ducted at each life cycle milestone to demonstrate that the items produced
are within the criteria specified by the SQAP. These criteria are normally
provided in the requirements specifications, preliminary and detailed design
documents, and the test plans. The documents provided to the users are the
requirement specifications, the preliminary and detailed design documenta-
tion, the results from the user acceptance test, the software code, the user’s
guide, and the operations and maintenance guide. Additional documents
can be specified in the SQAP.

Quality control can be provided by various sources. For small projects,
the project personnel’s peer group or the department’s Software Quality
Coordinator can inspect the documents. On large projects, a configuration
control board may be responsible for quality control. The board may include
the users or a user representative, a member of the SQA division, and the
project leader.

Audits are one of the traditional functions of quality control. Audits
are independent examinations to assess compliance with some stated criteria.
For software projects, audits may occur at two levels:

1. Audits of project compliance with the SQAP to determine all the qual-
ity control checks have been made.

2. Audits of some phase of the project to verify requirements established
by the previous phase. For example, an audit of the code against the
design documentation and standards, or an audit of the design against
the requirements document. Such auditing activities constitute a ver-
ification review, as described in Section 2.2.1.

Audits are used to examine the software project for adherence to the
written project rules at a project’s milestone and at other times during the
project’s life cycle as deemed necessary by the project leader or the SQA
personnel. An audit may be a detailed checklist for assessing compliance
or may be a brief checklist to determine the existence of deliverables such
as documentation. An audit report goes to the project supervisor, project
leader, and project personnel to act upon. The report states the audit’s
purpose and the deficiencies found.

c

-
Requirements,
Specifications __+ Software Quality Assurance +

-

Standards,
Practices,

Conventions

Figure 2: Elements Necessary for Software Quality Assurance

Verification
and

Validation

Who conducts the audits is explicitly stated in the SQAP. For small
projects, the project leader or the department's Quality Coordinator can
perform the audits. If the project is large, a member of the SQA division may
lead an audit performed by an audit team. The team has a structure similar
to the configuration control board discussed above under Quality Control.
Following the audit, project personnel are assigned to correct the problems
within a timeframe allotted for the correction. At Sandia, quality control
functions other than audits are usually performed by project management
personnel.

Configuration Quality
Management Control

2.2 An Overview of Quality Assurance Activities

There is considerable debate about how a high degree of software quality
may best be achieved. A growing body of literature and experience provides
many common elements of successful software quality assurance programs.
Functionally, most of these elements may be grouped into five categories, as
shown in Figure 2.

As shown in Figure 2, most software quality assurance activities may be
categorized as Verification and Validation, Configuration Management, or
Quality Control. But the success of an SQA program depends also upon the
existence of a well-thought-out , coherent collection of standards, practices,
conventions, and requirements and specifications.

7

3

2.2.1 Verification and Validation Activities

The major purpose of verification and validation activites is to ensure that
software design, code, and documentation meet all of the requirements im-
posed upon them. Requirements may exist as organizational or project-level
conventions, standards, and practices; user requirements; specifications de-
rived from and designed to meet user requirements; code review and inspec-
tion criteria; test requirements at the modular, subsystem, and integrated
software levels; and acceptance testing requirements for code after it is fully
integrated with hardware.

An example of an organizational convention could be “All code that
is used by, or is used to provide information to, individuals outside this
organization shall be written in ‘C’. No module shall exceed 100 instructions
in length and no module shall have a complexity greater than 8 as measured
by Mc Cabes’ Complexity Analyzer.” Code reviews and complexity analyses
can validate that project-generated code meets these requirements.

Lastly, the extent to which personnel independent of the design and
coding should participate in SQA activities is a matter of institutional, or-
ganizational, and project policy. SQA Division approval of verification and
validation plans is required for some code. Examples would include soft-
ware used in the development, manufacture, operation, or test of weapon
components or WR systems.

In brief, given that there are good reasons for the requirements on the
software and on its associated documentation, verification and validation
are activities to assure that these requirements are met. During software
design and implementation, verification is needed to determine whether the
products of one phase of the software development life cycle fulfill the re-
quirements established during the previous phase. The verification effort
is less time-consuming and is less complex when conducted throughout the
development process. Validation is a software evaluation at the end of the
software development cycle.

2.2.2 Configuration Management Activities

The second principle element of SQA shown in Figure 2 is Configuration
Management. This term refers to those activities designed to assure that
design and code are well-defined and cannot be changed without a full re-
view of the impact of the change and full documentation of the change. The
basic purpose of configuration management is to control code and its associ-
ated documentation so that final code and its description are consistent and

8

represent those items that were actually reviewed and tested. Thus spurious
changes to “make the code better” are eliminated.

As an example, after a software module is thoroughly reviewed and
tested, it is considered baselined and is given an “issue” or version num-
ber. A separate copy of that issue is controlled by management. The need
for any proposed changes to that issue should be carefully reviewed for need
versus impact (necessity of the change versus cost of retesting). This process
is discussed in some detail in Volume 4, Configuration Management [SSGV~].

The same control concept is applied to design to assure that it is “frozen”
after being reviewed and approved. When requirements change, configura-
tion management activities may be used to control changes to design and
delete any “obsolete” code. There are clear advantages to configuration
management activities in large, multi-programmer projects, and in long-
term single-person projects.

As with verification and validation activities, the general nature of con-
figuration management efforts may be a matter of organizational policy,
while specific implementation of this policy may be described at the project
level. For example, an organization may require that a separate configua-
tion management plan be prepared for projects that will generate more than
20,000 lines of code, and that a configuration control board (with the types
of members specified) should exist for a large project. At the project level,
the response would be to define such a configuration management plan and
control board, structured so that both meet organizational requirements.

2.2.3 Quality Control Activities

The basic, “traditional” function of quality control is to verify that the other
quality assurance functions are performed properly and in a timely manner
as required by organizational and project requirements documents. In this
area, the issues dealt with are illustrated by the following checklist:

0 Was the review conducted?

0 Did the required people attend?

0 Were all of the planned review activities completed?

0 Was a report written?

0 Were all post-baseline changes reviewed by the Configuration Control
Board, controlled in accordance with configuration management re-
quirements, and properly documented?

9

0 Were tests performed at the modular (or any other) level consistent with
the requirements?

0 Were any requirements not tested?

These traditional quality control functions are typically identified as audits.
The purpose of audits is to assess compliance with requirements, standards,
and practices, to confirm the existence of all sections of a project’s docu-
ments, and to measure the project’s progress. The term “audit” also refers to
activities undertaken to assess the degree of adherence of an organization to
its own, and institutional, quality requirements. Such audits are typically
conducted by a designee of organizational management (e . g . , the quality
coordinator for the organization) and by the Quality Operations Division,
independently.

In a highly controlled project, the actual control functions of quality con-
trol might include such things as the capability to prevent further activity
in the project life cycle until all (or some critical subset of) requirements
established during the previous software life cycle phase are met, or to pre-
vent release and use of the final product until all requirements on the code
and its documentation are met. At Sandia, these control functions are often
reserved for the project leader or supervisor, so that these persons perform
quality control functions, while personnel performing the audit functions
illustrated above serve to identify areas in which control might need to be
exercised.

In addition to the audit role and the possible exercise of direct control
over development activities, quality control personnel are sometimes given
the responsibility for some of the verification and validation and configura-
tion management functions. For example, if individuals with quality control
responsibility are software engineers, they may be given full responsibil-
ity for developing the software verification and validation plan (sometimes
in concert with the Software Quality Assurance Division, depending upon
requirements), conducting some or all of the software tests, and leading soft-
ware review efforts. They may also be assigned configuration control board
responsibilities.

2.3

The first clear requirement to implement software quality assurance pro-
grams is that organizations and projects must define the conventions, prac-
tices, and standards that are applicable to their activities. The most essen-

Requirements to Implement an SQA Program

10

tial of these encompass software design, software implementation, software
verification and validation, configuration management, and quality control.

Internal, organizational standards might address which reports, docu-
ments, manuals, etc., are to be prepared; what format to use; who is respon-
sible (generically); what level of quality control is required as a function of
project complexity; and what overall standards for design, implementation,
testing, etc. are to be applied to projects for which the organization is re-
sponsible. An individual project, on the other hand, would expand upon
such requirements, respond to such requirements, or add its own.

Considerable care should be exercised in the definition of standards, ac-
tivities, and responsibilities, both at the organizational level and the project
level. Ill-conceived requirements will not lead to the desired high-quality
software. The requirements should stem from the quality ob-jectives based
on the activity and the personnel associated with it. Generally, it is the
responsibility of the organization or project to decide how to achieve its
own desired software goals, using guidance such as this document. For crit-
ical software that may affect the quality of a weapon, weapon component,
or associated data or information, the Software Quality Assurance Division
should be consulted for additional guidance.

A second requirement is that organizational and project policy and ap-
proaches be documented. Sandia’s Quality Plan [SQP86] suggests the same
need. One effective approach is to write a software quality assurance plan
which specifies participants, their responsibilities, the nature of software
quality assurance activities, as well as the character of both external and
project-developed specifications and requirements. The major purpose of a
software quality assurance plan is to provide definition of the activities nec-
essary throughout the software life cycle. Section 3 discusses the planning
process in more detail, and Appendix A provides an example project plan.

2.4

Soft,ware quality assurance programs may at first appear to be burdensome
and unneccessary. “Why not just write the code?” is a common question.
Many of us just write the code on a personal computer to support our own
activities of scheduling and planning. It is not unreasonable to ask why this
is inappropriate in other areas.

All too often the planning and design steps that keep a project under
control are thought to be expendable. What looks like a short-cut becomes
expensive in quality, maintainability, and even time.

Why have an SQA Program?

11

Preparing and using an SQAP allows control throughout the life of the
software. Two important project aspects that can help demonstrate this
point are software design and project maintenance.

Software design and implementation can be enhanced by the stated stan-
dards and guidelines in the SQAP. A typical standard is to have a particular
task coded in only one place. This greatly simplifies tracing through the
control paths. Other standards are the use of well-defined program states,
and accurate in-line comments. The software can be easily evaluated to
determine whether it fulfills the requirements.

Code maintenance also has associated problems. Maintenance allows for
the continued use of software. Software development without standards and
documentation makes determination of what a code segment is doing dif-
ficult and time consuming, if not impossible. Even if modifications can be
made, unwanted side-effects may go undetected. Many times, software has
been re-written from scratch because it was not possible to modify it. Con-
trol over code maintenance should be established by the same configuration
management activities that were imposed during code development.

A software quality assurance plan provides the framework and guide-
lines for the development of understandable and maintainable code. These
ingredients help to ensure the correctness and quality sought in a software
project.

12

3 Contents of a Software Quality Assurance Plan

A software quality assurance plan provides the procedures for assuring high
quality software produced or maintained in-house or under contract. These
procedures affect the areas of planning, designing, writing, testing, docu-
menting, storing, and maintaining computer software. The following de-
scribes the contents of an SQAP, and relates these contents to the specific
sections prescribed by the IEEE Standard for Software Quality Assurance
Plans [IEE84]. Appendix A exemplifies a plan with sections written accord-
ing to the standard.

3.1 Introduction and Program Structure

An SQAP should give the formats, administrative aspects, rules, and re-
quirements to follow, and where possible, an outline of content for all re-
quired documents. The SQAP should:

0 list (not describe) tools and methodologies

0 outline project responsibilities (not describe how to design)

0 reference (not detail) software development guidelines

because an SQAP assures the quality of the software rather than specifying
procedures for developing and maintaining the software.

3.1.1 Purpose

The purpose of au SQAP (provided in Section 1 of an SQAP according to
(IEE841) is to provide a set of requirements that, when met, assure that
the software satisfies its intended mission, is useable, and is maintainable.
An SQAP can be applied to any software developed at Sandia National
Laboratories.

At Sandia National Laboratories, SQAP's are implemented on a project-
by-project basis as decided by the project supervisor (2. e., by management at
the supervisor level or higher). The project leader (usually a staff member)
will use these guidelines and may work with the Software Quality Assurance
Division to write and implement the SQAP.

According to the IEEE Guide for Software Quality Assurance Planning
[IEE86], the SQAP should address the following questions:

13

1. Which software products are covered b y this SQAP? Name each prod-
uct.

2. What is the intended use o f the software covered b y this SQAP?How
is the software to be used? How critical is the software? If it is part
of a larger system, how is it related to the system?

3. Why is this SQAP being written? Is the plan being written in response
to internal or external requirements? Why is the plan needed?

4. What documents form the basis of this SQAP? If there is deviation
from these documents, what is the rationale? Describe the extent to
which the SQAP is based on this volume or on the IEEE Standard for
Software Quality Assurance Plans [IEE84].

3.1.2 Reference Documents

The project leader provides (in Section 2) a list of documents that may
be helpful in following and implementing the SQAP. The sample plan in
Appendix A gives examples of the types of documents that may be needed.
Appendix B provides bibliographic information on some actual reference
documents.

3.1.3 Management

The project supervisor is responsible for deciding whether an SQAP will
be applied to a particular project. If an SQAP will be applied, the project
leader will direct its development and implementation in cooperation with
the Software Quality Assurance Division. This plan (in Section 3) specifies
the project software quality assurance tasks and responsibilities.

3.1.3.1 Organization

The IEEE standard [IEE84] states that an organizational paragraph in the
SQAP should depict the organizational structure that influences the quality
of the software and should include a description of each major organizational
element involved with the software project. Organizational dependence or
independence of the elements responsible for SQA from those responsible
for software development should be clearly described or depicted. [See Ap-
pendix A for an example of this].

14

3.1.3.2 Responsibilities

Finally, the SQAP will detail the responsibilities of each organization in-
volved in the project. Both software development responsibilities and overall
management responsibilities should be included. Because different softwarc
projects vary so widely in size, the separation of the SQA responsibility from
software development is at the discretion of the project leader.

3.2 Design Control

This section identifies quality program elements for the three areas which
define Design Control according to Sandia's Quality Plan [SQP86]:

0 Design Information - Maintain engineering documentation and stan-
dards, practices, and conventions to assure that the software is devel-
oped to the latest applicable requirements.

0 Design Review - Review the products to verify that they are adequate
to fulfill the specific intent and have been appropriately validated.

0 Change Control - Manage configuration, report problems, and identify
corrective action to assure that changes are governed by consistent
control measures which allow changes to be implemented in a timely
manner.

3.2.1 Design Information

3.2.1.1 Engineering documentation is a documentation set that describes
activities in the software life cycle from development through use and main-
tenance of the software product. Section 4 of the SQAP identifies the
documents required and describes how to assess document adequacy. The
Guidelines for Documentation and Standards, Practices, and Conventions
([SSGV~], [SSGV~]) contain detailed information on each of the following
document types, including its purpose, content outline, and intended audi-
ence.

0 Project Plan

0 Software Requirements

0 Software Design Description

0 Results of Reviews and Audits

15

0 Software Verification and Validation Plan and Resulting Report

0 Test Set Documentation and Results Report

0 Maintenance Documentation

0 Training Plan

0 User’s Manual and Operating Procedures

Most of the documents will not be static, such as the project plan, main-
tenance, and test results documentation. Design and requirements docu-
ments should be up-to-date as well.

3.2.1.2 The SQAP describes (or references) in Section 5 standards, prac-
tices, and conventions to be followed for a project. Examples include:

0 variable and file naming conventions

0 version designations during development and test

0 software prologue content

3.2.1.3 The SQAP identifies (or references) in Section 9 special tools,
techniques, and methodologies used for a project. Different tools and tech-
niques are suitable for different phases of the software life cycle. Refer to
Volume 3, Standards, Practices, and Convent ions [SSGvS] for suggestions of
tools by phase, and Volume 5, Tools, Techniques, and Methodologies [SSGV~]
for a directory of software tools aqd methodologies at Sandia.

3.2.2 Design Review

Section 6 of the SQAP identifies the reviews and audits to be performed,
and provides guidelines for conducting them. Reviews and audits are used
to determine compliance with specifications and standards, and to assess
progress made in the project. Deviations from specifications and standards
caught early in the software life cycle are easier and thus cheaper to cor-
rect. Another benefit is increased communication between project members,
management, and others involved in the reviews and audits. The difference
between audits and reviews is the following: An audit is an independent ex-
amination to assess compliance with software requirements, specifications,
and standards. A review attempts to uncover design or code deficiencies
affecting system quality. A review may be performed by the QA group,

16

.
the project leader, developers, users, or code testers. Administration of the
following customary reviews is discussed in Volume 3, Standards, Practices,
and Conventions [SSGvS].

0 software requirements review

0 software design reviews - preliminary and detailed (or critical)

3.2.3 Change Control

Configuration management helps protect the investment made in software
development, maintenance, and project documentation. Sections 3.3 and
3.4 contain further details. This SQAP section (Section 7) is to:

0 Identify methods of protecting versions of completed code, as well as
document at ion.

0 Identify who is responsible for various facets of configuration manage-
ment.

0 Identify who is authorized to make changes.

0 Identify who is authorized to approve changes and who comprises the
configuration control board, if there is one - supervisor, project, leader,
etc.

0 Describe the interface control, i .e., the management of changes which
affect several projects.

0 Identify the product baseline.

Refer' to Volume 4, Configuration Management [SSGV~] and the configura-
tion management section in Volume 3 , Standards, Practices, and Conven-
tions [SSGvS] for further details.

Following the configuration management section, section 8 of the SQAP
should identify methods for reporting, tracking, and fixing software problems
during development and maintenance. The purpose of problem reporting
and resolution is to:

0 Document problems

0 Determine validity of reported problems

17

0 Provide a vehicle for developer, user, and manager to assess problem
status

0 Provide feedback for assessing software quality and reliability

3.3 Other Quality Factors

This area of the SQAP covers the more administrative aspects of the plan.
It addresses the questions of

0 Code Control. Where is the code located? Who has access to it, and
what procedures do they need to follow for reading or modifying the
code?

0 Media Control. What medium is the code on? How is it backed up?
How is it stored?

0 Supplier Control. What should you ask of a supplier in terms of
quality assurance? What can you expect to get?

3.3.1 Code Control

Section 10 of the plan describes how the actual programs will be managed.
The Configuration Management section of the plan will indicate things such
as what constitutes a baseline, who authorizes and approves changes, and
how portions of code relate to one another (interface control). The Code
Control section, on the other hand, defines how the policies identified in the
Configuration Management section are carried out. This section should do
the following:

0 identify the criteria which will determine how, and to what degree,
a particular module will be controlled. For example, utility rou-
tines called by many modules may need broader review of anticipated
changes than single-purpose modules. These criteria can then be used
by the design team to specify controls on a module-by-module basis.

0 prescribe the conventions for labeling and cataloging the controlled
software. Should directory listings be glued to a tape reel? To a disk-
pack cover? A commercial database manager may be chosen to keep
records of, e . g . , which releases of which modules are in what cabinet,
on which optical disk. It should be decided to what degree of detail
it is necessary to specify these sorts of conventions. The conventions

18

then should be documented in the plan. (The Department of Energy
has regulations for the cataloging and labeling of media according
to classification - these should be included as part of the SQAY if
appropriate.) Who will do all of this labeling and cataloging? If a
librarian is required, that requirement should be stated in the plan.

0 identify physical storage location requirements for software bascd on
criteria such as need for immediate access, need for protection of crit-
ical or classified code, etc. This is not to say that a good teririinal I/O
routine must be hidden from those who may wish to borrow the code,
but neither should a tape reel containing the only copy of the world's
fastest sort program be left around where it might be used as a scratch
tape for backups (again, include DOE and security requirements if and
as appropriate).

a list procedures for distributing copies, where such copies are autho-
rized by the Configuration Management Section. The impact of hav-
ing "unreleased" code in circulation should be assessed. The degree of
stringency in code protection should be specified in the plan.

0 identify the documentation affected by various levels of chang?. For
example, if a bug is fixed to make the code work as originally docu-
mented, there may be no documentation change required (except. of
course, for those documents created as a result of the change-control
process). If a simple instruction sequence is replaced with an obscure
one to tune the system for better performance, the maintenance docu-
mentation should reflect the change, but the user's guide should need
no modification. If enough features are added to make the user in-
terface significantly different, the user's guide, reference manual, code
documentation, etc., should be changed.

a describe procedures for implementing a new version. Such procedures
might cover all of t'he labeling, cataloging, and documenting described
above, as well as distribution lists and procedures.

3.3.2 Media Control

Section 11 deals with physical protection and control of the media, such as
tapes, disks, punched cards, firmware, etc., containing the code and docu-
mentation, to ensure that the Code Control and Configuration Management
can be implemented effectively. To some degree, the issues of 3.4.1 apply

19

. . ." . I ,. . . .

here, since physical protection of the media is intimately associated with
protection of the code contained therein. The SQAP may need to address
the following issues:

0 means of physical access for software storage and retrieval. If the de-
velopment machine on which work is to be done is password protected,
the plan should address password control. If the machine, terminals,
and all storage media are in a locked room, the plan may address access
control for the room. Are backups a routine part of the operation of
the machine, or will they need to be done specifically for this project?
This question shou1.d be resolved in the plan.

0 physical storage precautions to be taken to protect code with special
access or protection requirements as defined by Configuration Man-
agement or Code Control. The DOE, again, gives detailed guidance in
the protection of classified materials. The plan also may include spe-
cial physical protection, such as the locked room for code which the
specifiers feel needs to be restricted to the developing and maintaining
organizations.

0 environmental precautions to be taken, where appropriate, to ensure
integrity of the data on the storage media.

3.3.3 Supplier Control

Section 12 describes the steps to be taken to assure quality of software
purchased from outside sources. The avenues available for SQA will vary
depending on how intimately the supplier wishes to interact with Sandia or
the DOE. Note that there will probably be a significant difference between
dealing with contractors developing software specifically for Sandia, and
vendors supplying software “off-the-shelf”.

0 If possible, the plan should include requirements for the supplier to
provide evidence of adherence to an SQAP, especially for contractor-
developed software, such that

- Sandia has an opportunity to augment the supplier’s plan to in-
clude items necessary to the project. Such extension will clearly
never be the case for a commercially available, “off-the-shelf”
product.

20

- means are provided to monitor administration of the SQAP. Such
a requirement is also not applicable to an “off-the-shelf” product.

- remedies are specified for non-compliance to the supplier’s plan.

0 Realistically (especially for vendor-supplied software) there will often
be severe limitations on the ability or willingness of vendors to comply
with Sandia’s SQA requirements. In these cases software should be
considered much like other purchased commodities, and the project
SQAP should include considerations such as

- how well do the specifications of the software meet the needs of
the project?

- how well does the software adhere to its specifications? Often, a
supplier eager to tap a potentially lucrative market like Sandia
will loan out software (and even hardware) for evaluation. In
these cases, a test and evaluation plan for purchased software
may need to be included in Sandia’s SQAP.

- what kind of warranty does the supplier offer? Is the supplier will-
ing to remedy non-compliance with the specifications promptly,
or at all?

- what kind of support (installation, help, upgrades) does the sup-

- is the source code available? Is the documentation even available?

- what is the reputation of the vendor? Of the product?

plier offer?

Attention to these administrative matters at the outset will make the
project less hectic and ultimately more rewarding for everyone involved.

3.4 Documentation Control

Section 13 identifies project records to be maintained and specifies the re-
tention periods. The records include:

0 Technical reports, e.9. :

- user’s manuals

- maintenance manuals

0 Configuration control records for the software

21

0 Inspection and test procedures

0 Results of evaluations, inspections, reviews, audits, and tests of devel-
opment and production software

0 Formal project documentation, e.g.:

- system specification

- preliminary design specification

- detailed design specification

0 Project log books or notebooks

All project documentation must be kept current, including requirements,
design, and test documentation. Thus, control features for assessing timely
issuance and updating of such records should be described. The format
desired for the project records should be specified, and the intended audience
for each identified.

3.4.1 Records Collection

The type of records to be collected on a Sandia project are determined by
the objectives for record collection. The records to be collected should be
based on the quality assurance requirements with the overall objectives doc-
umented in the SQAP. Examples of records collected for certain categories
of projects are given in Table 1 below.

An objective is to provide evidence that ,the software development pro-
cess was performed in conformance with established professional practice,
or the customer’s requirements, particularly for a reimbursable project. An-
other objective of records collection for any project is to keep management
informed of development progress. A third objective of records collection is
to provide historical information for future repetitive testing during project
software changes. This historical information should include reports of cor-
rective action ~ what action was taken, what components were changed.
Development and test records must be collected, as well as documentation
on tools used to develop and test the software and the system.

3.4.2 Records Maintenance

Records are maintained to furnish evidence of the quality of the computer
programs and associated documentation, and to record how the programs

22

Type of Project:
Weapon System (i. e., WR) Project

Reimbursable Project

In-house Project

Table 1: Example Records for Collection

Example Records:
Requirements document
“SD” (Software Documental ion)
Design Document
Test Plan
User’s Manual
Requirements document
Design Document
Results of reviews and audits
User’s Manual
Requirements document
Design Document
Maintenance Manual

were developed so that evaluation by the users and management can be
performed. The records include the results of reviews, inspections, tests, and
audits. Closely related data must also be maintained, such as data relatrd
to project procedures and equipment. The project leader ensures that all
these data are systematically collected and analyzed and the results used for
the detection, correction, and prevention of deficiencies. This collection of
data includes error reporting data, such as software nonconformance reports
or problem reports.

The plan specifies the record maintenance and review schedule, and
identifies the record media, such as electronic files, hardcopy, or microfiche
format. The individual responsible for maintaining the records should be
named by position, e.g., the project librarian or project manager. Pro-
cedures to enforce parallel updating of documentation and software code
changes are referenced here. Example: “The project librarian only accepts
code into the library which is accompanied by the corresponding tlocumen-
tation.”

3.4.3 Records Retention

The plan specifies the length of time the project needs to retain each type
of record, once the project has been completed and the system has been

23

delivered. At Sandia, the guidelines in Table 2 (below) are suggested for the
project records itemized in this section.

Type of Project Record:
Technical (e . g., SAND) Reports
Configuration control records
Inspection and review results
Test results (one complete set,

plus latest change results)
Formal project documentation
All other prqiect documentation

Retention Period:
indefinitely
life of system
six months to life of system
life of system

life of system
one year to life of system

Table 2: Records Retention Periods

Additional details and suggestions for documentation control are found
in Volume 4, Configuration Management [SSGV~].

24

..-

4 Implementation of a Software Quality Assur-
ance Plan

The implementation of an SQAP involves the process of planning, formu-
lating, and drafting the contents of an SQAP. Implementation also involves
obtaining the necessary approvals for the plan as well as developing a plan
for executing the SQAP. The subsequent evaluation of the SQAP (described
in Section 5) will be performed as a result of its execution. This implemen-
tation process can be divided into four categories:

1. Acceptance by Management

2. Acceptance by Development Personnel

3. Planning for Implementation of the SQAP

4. Execution of the SQAP

4.1 Acceptance by Management

Management participation is necessary for the successful implementation of
an SQAP. Management is responsible for both ensuring the quality of a
software project and for providing the resources needed for software devel-
opment.

The level of management commitment required for implementing an
SQAP depends upon the scope of the project. If a project spans organi-
zational boundaries, approval should be obtained from all chains of affected
management (e.g., Department 2640, Division 9812). Once approval has
been obtained, the SQAP is placed under configuration control (see Section
6). In the management approval process, management relinquishes tight
control over software quality to the SQAP administrator in exchange for
improved software quality. By and large, Sandia's software quality has been
an issue left to software implementors. High quality is desirable, but concern
may be expressed at the management level as to the "cost" of a formal soft-
ware quality assurance program. Staff should be aware that management
views an SQAP as a means to ensuring software quality, not as an end in
itself.

In order to address management concerns, software life-cycle costs should
be formally estimated for projects implemented both with and without a for-
mal SQAP. In general, implementing a formal SQAP makes good economic
and management sense.

25

4.2 Acceptance by Development Personnel

Since the software development and maintenance personnel are the primary
users of an SQAP, their approval and cooperation in implementing the plan
is essential. The software project team players will be required to adhere to
the project SQAP, so all team players must accept the SQAP and follow it.

No SQAP will be successfully implemented without the involvement of
the software team members and their management in the development of
the plan. At Sandia, project teams generally consist of only a few members.
In this case all team members should actively participate in writing the
governing SQAP. When projects become much larger (2 . e., encompassing
entire divisions or departments), representatives of project subgroups should
provide input to the development of the SQAP. Constant feedback from
representatives to team members will help gain acceptance of the SQAP.

4.3

The process of planning, formulating, and drafting an SQAP requires staff
and word processing resources. The individual responsible for implementing
an SQAP must have access to the appropriate resources. In addition, the
commitment of resources requires management approval and, consequently,
management support (see Section 4.1). In order to facilitate resource al-
location, management should be made aware of any project risks which
may impede the implementation process (e.g., limited availability of staff or
equipment). A schedule for drafting, reviewing, and approving the SQAP
should be developed.

Planning for Implementation of the SQAP

4.4 Execution of the SQAP

The actual process of executing an SQAP by the software development and
maintenance team involves determining necessary audit points for monitor-
ing the SQAP. The actual evaluation of an SQAP is the subject of Section 5.
The auditing function must be scheduled during the implementation phase of
the software product so the software quality assurance program will not fail
due to improper monitoring of the software project. Audit points should
occur at either periodic points during development or at specific project
milestones, such as major reviews or a project deliverable.

26

5 Evaluation of a Software Quality Assurance
Plan: Guidelines

A draft Sandia engineering procedure on Software Quality Assurance for
Sandia Designed or Developed Software ([EPd87], based largely on [IEE86].
the IEEE Guide for Software Quality Assurance Planning), calls for tho
preparation of a software quality assurance plan for the design arid develop-
ment of software that requires certification. The procedure will define Sandia
policy that will assure that software designed or developed has well-defined
objectives and has been adequately documented, reviewed, arid tested to
assure that the objectives and requirements are met.

Software quality assurance should make provisions for periodic or on-
going evaluation of the SQAP. Such evaluation can be conducted by the
project leader or, for critical software, by a member of the SQA division.
Evaluation of the SQAP involves examining it from two viewpoints:

the plan's contents

- has a clear statement of the scope and applicability (complexity)
of the plan

0 the use and administration of the plan

- determines what is in the plan and how the plan is administered

5.1 Evaluation of the Plan's Contents

The evaluation should be done based on a checklist which allows the evalu-
ator to verify that all requirements have been addressed.

Thus, the SQAP should have a purpose stated, a description of the
software, and what checkpoints are to be used. The assessment of the SQAP
can be accomplished by asking a series of questions:

0 What are the mandatory software requirements (e . g . , IEEE, Sandia,
Nuclear Regulatory Commission) and are they addressed?

0 What other standards are referenced?

0 Are exceptions adequately justified?

0 Is the content of the SQAP sufficient to achieve the stated objectives?

The evaluator should create or specify a form for evaluation that will address
these basic questions, as exemplified in Table 3.

27

Required SQA P content:

Specific purpose
and scope described

Software product
item described

Tools, techniques, methods:
documented, justified

Standards, practices, and
conventions stated

Requirements and
specifications stated

Computer Program Design:
documented, complete

Documentation: procedures,
delivery to end-user

Computer Program Library:
procedures, controls documented

Reviews and Audits:
preparation, execution

Configuration Management:
how CM objectives are assured

Testing: states reviews of
requirements, criteria, plans

Corrective Action: provides
prompt correction of defects

Table 3: Example SQAP Content Evaluation Form

Where found Evidence that Exceptions
an SQAP: plan is adequate: noted:

5.2 Evaluation of the Plan’s Administration

The SQAP administration is to be evaluated in terms of the availability of
relevant documents, procedures, and plans. For example, one might evalute
the plan as to how adequate the procedures are for establishing traceability
of requirements and for verifying that management monitoring and control
is adequate and timely.

Here also the evaluator should create or specify an evaluation form that
will address the administration of the plan, as exemplified in Table 4.

28

Requirements
Management activities

All referenced documents available
completely described

Software documentation complete
Software Configuration Plan exists
Procedure for problem reporting and

Code control procedures available
Tools, Techniques, and Methodologies

Records Management System in place

corrective action in place

exist

Responsible verif ication VertficataOn
Person Method' Frequency

Table 4: Example SQAP Administration Evaluation Form

Each organization, at whatever level is appropriate, should identify a
responsible person for the SQAP evaluation function.

At Sandia, designated personnel writing an SQAP for a project have an-
other resource available to them. The Software Quality Assurance Division
may provide guidance in formulating plans and useful feedback in review-
ing plans. The Quality Operations Division can also perform independent
internal audits of the SQAP.

Note': Verif ication should be in su f ic ien t detail t o assure traceability.
Examples: citing documents and procedures which are in place, M e m o For
Record of activity completed, etc.

29

6 Modification of the Software Quality Assur-
ance Plan

Even the best SQAP is no good if it is hopelessly out-of-date with the
software product. An approved and implemented SQAP can and should be
modified to reflect the quality objectives of the current software product.

The questions of when and why a plan should change are answered in
subsections:

0 Keeping the Plan Current

0 Reasons for Changing the SQAP

The questions of who should change the plan and how to change the
plan are answered in subsections:

0 Forma1it)y of Change Control

0 Methodology for Changes

6.1 Keeping the Plan Current

The plan should be updated whenever the project has an approved change
in requirements or environment. At each milestone in the project, the plan
should be reviewed for evaluating its relevancy to the current project and
preparing for the next stage of the prqject’s life cycle. The plan is a viable
working document since it describes the quality control imposed upon the
software product. Since it is an approved document, the SQAP should be
controlled. The degree of control varies, dependent on the project. Formal
configuration management control may be necessary for a large or critical
project while informal control such as a page in the project’s workbook or
file folder may suffice for less critical or smaller projects. Clearly. whenever
changes are approved, all the project team members should receive a copy
of the revised plan.

6.2

A project’s SQAP can be changed for many reasons, using the previous sec-
tion (Section 5, Evaluation of an SQAP) as a guide. The following examples
are possible reasons for changing a plan:

Reasons for Changing the SQAP

30

0 The project's environment has evolved because of

- changing project objectives or deliverables

- hardware changes;

0 The project's management has altered because of

- changing responsibilities of the project or SQA personnel

- changing participants:

0 The plan has omissions. and needs

- more or better SQA techniques (tools)

- amplified test sets:

0 The plan has identifiable deficiencies

0 The plan has extraneous information. such as

- sections that no longer apply

- outdated standards. practices. or conventions.

6.3 Formality of Change Control

If the project is large. lengthy. or has "critical" factors. then it may benefit
from having a more formal organization, e.g.. a configuration control
board, to rule on changes to the plan or the project. Such a board can be
created on an ad hoc basis as needed or appointed for the duration of the
project. The membership of the board could include (but is not limited to):

0 project leader

0 systems analyst

0 hardware engineer

0 software team leader

0 SQA specialist

0 customer representative

0 user representative

31

0 independent verification and validation personnel

0 management representatives (for projects that span organizations)

For small projects, the project leader will be the “board.” In addition to
ruling on changes, a configuration control board can act as the quality con-
troller (take action to approve the documents required) to perform the audits
and to interface with the customers and users. The independent verification
and validation (IV&V) source may work well if the personnel are not asso-
ciated with the project, have worked on a similar project, and are familiar
with SQA techniques.

6.4 Methodology for Changes

The configuration control board addresses problems in the plan and consid-
ers suggestions for improvement. Change requests can come from anyone
associated with the project or possibly external people, e . g . , auditors or
upper level management. The requests should be written, using a change
control form similar to the error reporting form for software [SSGvS].

The board must decide if the requests are legitimate and pertinent to
the SQAP. If they are, a modification of the document is in order. The steps
are:

1. Seek several alternative solutions that may solve the problem.

2. Review all proposed solutions and determine what solution best an-
swers the problem.

3. Get management approval of the revised plan.

4. Incorporate the changes in the SQA plan, highlighting the changes
made.

5. Distribute the revised plan to all interested parties.

6. File and control the revised plan.

Note: For large projects or a potentially troublesome solution. the fol-
lowing actions are recommended between steps 2 and 3:

0 Send the recommended solution to project and SQA personnel for their
review and comments.

32

,-

0 Reevaluate the solution, reviewing comments received, and eit,her ap-
prove, reject, or modify the solution, iterating on these last two actions
as necessary.

33

Appendix A

Example Software Quality Assurance Plan
This Appendix provides a sample Software Quality Assurance Plan for a
project at Smdia.
project have been obscured to emphasize the general philosophy and the
techniques employed in the plan.

F o r the purpose of this exanrple, the details of the

SOFTWARE QUALITY ASSURANCE PLAN

for

SANDIA NATIONAL LABORATORIES GENERIC PROJECT (GENERIC)

Version 1.0
August 13, 1987

Submitted By: Larry J . Marsupe
GENERIC Project Member
Sandia National Laboratories

Reviewed By: Sandra A. Raison
GENERIC Project Member
Sandia National Laboratories

Approved By:
GENERIC Project Leader

34

TABLEOFCONTENTS

SECTION

1 .o

2 .o

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

Purpose ...

Reference Documents

Management ..

Documentation ..

Standards, Practices, and Conventions

Reviews and Inspections

Software Configuration Management

Problem Reporting and Corrective Action

Tools, Techniques, and Methodologies

Code Cont'rol ..

Media Control ..

Supplier Control ...

Records Collection, Maintenance, and Retention

Testing Methodology

APPENDIX Glossary and Acronyms

a

GENERIC Software Quality Assurance Plan

1.0 Purpose

This Software Quality Assurance (SQA) document provides a plan for pro-
ducing, controlling, and maintaining software for the Sandia National Lab-
oratories Generic (GENERIC) project. The GENERIC project will provide
a capability for the exchange of product definition data between different
brands of interactive graphics systems. This SQA plan is written in response
to and is in conformance with the DOE-CIM Standard CIM-101, Manage-
ment Plan for Quality Assurance of Software Shared Within the DOE. This
plan is based on ANSI/IEEE STD 730-1984 arid the Sandia Software Guide-
lines, Volume 1.

The software products covered by this plan are the software programs
PARSER, KERNEL, arid FILEWRITER. This plan also provides guide-
lines for developing, documenting, and maintaining various TRANSLATOR
software programs.

The intended use of this software is the preservation of visual equivalence
of drawings between sending and receiving systems. The approach to the
exchange process is based on the use of a standardized data format used by
the sending system to put the data into a non-proprietary form where it can
be manipulated as required through vendor specific translator software, and
also by the receiving system at the completion of the exchange process.

Figure 1 presents a block diagram of the proposed Phase 1.5 GENERIC
software system. It shows the software programs and the data transfor-
mations between software programs that are required for data exchange
between two graphics systems.

b

Vendor
format

KERNEL

anslato

GENERIC FI WRITER format
PARSER .--c DBMS ----+ -

Figure I : GENERIC Sgstern

The GENERIC project will provide a processing environment arid ai%-
ilary software for automating file manipulations deemed necessary for siic-
cessful transfer of product definition data. For the early phases (Phase
1.0, prototype; Phase 1.5, production), all such file nianipulatioris are per-
formed while the data resides in a relational database maintained through
a database management system (DBMS).

2.0 Reference Documents

2.1 DOE-CIM Standard CIM-101
Managemen t P lan For Quali ty Assurance Of S o fttliiare Shared Wi th in
T h e DOE, DOE/AL, draft dated Scpt 1986.

2.2 Sandia Software Guidelines
Volume 3. Standards, Practices. and Con71entions. SAND85-2346. .July
1986.

2.3 Software Requirements Specification
Software Requirements for The Sandia National Laboratories Gcnerir .
Project (GENERIC), Phase 1.5. Sandia Org 9810. August 1986.

2.4 GENERIC Project Plan

The Sandia National Laboratories Generic Project (GENERIC) Ad-
ministrative Plan, Phase 1.5, Sandia Org 9810, March 1987.

2.5 GENERIC Software Test Plan
The Sandia National Laboratories Generic Project (GENERIC) Soft-
ware Test Plan, Phase 1.5, Sandia Org 9810, February 1987.

2.6 Software Configuration Management Plan
SCMP for the Sandia National Laboratories Generic (GENERIC) Project,
Sandia Org 9812, draft dated Jan 1987.

3.0 Management

3.1 Organizational Structure

The GENERIC software project operates within the organizational structure
diagrammed in Figure 2:

I
Translator GENERIC

Project
Groups

GENERIC
Subgroup

Project
Director
(9800)

Graphics
Steering

Committee

Department

Groups

Figure 2: GENERIC Project Organizational Structure

3.2 Tasks and Responsibilities

This section identifies the responsibilities of specific individuals and organi-
zations.

d

3.2.1 Project Leader (Lead Software Engineer)

will:

0 Prepare and implement this Software Quality Assurance Plan.

0 Prepare the Software Requirements Specification [Ref 2.31.

0 Manage the GENERIC software development.

0 Perform integration of the GENERIC software programs.

0 Distribute the GENERIC software to requesting users and coordinate
the software installation.

0 Develop and implement configuration control procedures for the
GENERIC software system.

0 Retain the GENERIC software system acceptance test results.

0 Coordinate the GENERIC system maintenance with users and Soft-
ware Development Groups.

0 Provide training in the development of TRANSLATOR software units.

3.2.2 Software Development Groups

The Software Development Groups (SDG) are defined as follows:

0 Sandia National Laboratories, Division 9813, is responsible for the
KERNEL software unit.

0 Sandia National Laboratories, Division 9811, is responsible for the
SCHEMA and PARSER software units.

0 Commercial Contractor, Albuquerque, NM, is responsible for the
FILEWRITER software unit.

For each software unit for which an SDG has responsibility, the SDG will:

0 Develop documentation as defined by section 4.2 of this SQAP.

0 Perform and document software unit verification testing.

0 Provide the source code and test, results summary to the Project
Leader.

0 Revise software units as directed by the Project Leader.

e

. .

3.2.3 Testing Subcommittee

The Testing Subcommittee is comprised of one staff member from each of
the SDG's and is chaired by the Project Leader. Its responsibilities are to:

0 Prepare, coordinate, and implement the GENERIC system test plan.

0 Develop and carry out integration and acceptance testing for the
GENERIC system.

0 Prepare system integration and acceptance testing results summary
for the GENERIC system.

4.0 Documentation

This section identifies the governing GENERIC project documentation and
states how these documents are to be checked for adequacy. Responsibility
for a document implies origination, verification, maintenance, and control
of the document.

4.1 Software Requirements Specification

The purpose of the Software Requirements Specification [Ref 2.31 is to
serve as the instrument of record for the requirements and approvals for
the GENERIC Software System. The Project Leader is respbnsible for the
SRS; the document will follow the specified outline for an SRS as provided
in Sandia Software Guidelines, Volume 2, '' Documentation." The qualities
and contents of this document will follow ANSI/IEEE Std 830-1984, IEEE
Guide t o Software Requirements Specifications, and will be inspected during
the Software Requirements Review as identified in Section 6.

4.2 System User's Guide

The User's Guide will provide:

1. Background information.

2. Instructions for use of the system.

3. System limitations.

4. System error handling.

5. Input/Output requirements.

f

6. Input/Output examples.

7 . Unit user's guides.

The responsible organization for the User's Guide will be Commercial Can-
tractor Company, Research & Development Department.

4.3 Installation Guide

The GENERIC System Installation Guide describes installing the GENERIC
software on a Digital VAX 11/785 under VMS 4.3. The Guide describes a
command procedure to load, compile, and link software unit,s and provides
instructions to install the software system. A diagnostic test procedure is
provided to verify the system. The command procedures will:

1. Copy the GENERIC software to disk from tape.

2. Compile and link the GENERIC software.

3. Link libraries as needed.

4. Link the database management system.

5. Perform logical unit assignments as necessary.

The responsible individual for the Installation Guide is the Project Leader.

4.4 Test Results Summary

For all test cases the following will be supplied in the documentation:

1. The inputs and the outputs.

2. The modules and functions specifically being tested.

3. The expected results.

4. The actual results.

The responsible organization for the Test Results Summary will be the Test-
ing Subcommittee.

4.5 Software Unit Documentation

Each software unit under the GENERIC project will be developed by the
Software Development Groups, who are responsible for providing and re-
viewing the following documentation.

4.5.1 Preliminary Design Document

For each software unit: the Preliminary Design Document contains a de-
scription of:

1. Software unit ob,jectives

2. Interfaces among hardware, software, and users

3. Major software functions

4. Ext,ernal files and databases

5. Design constraints and limitations

6. Reference documents

7. The design (to include descriptions of the data, the flow of information,
and interfaces within the software)

4.5.2 Detailed Design Document

The Detailed Design Document contains:

1. Module descriptions, which include a description of the process, an
interface description listing all data input and output from a module,
and interfaces with other modules. The description should clearly
describe the major tasks and processing that occurs within the module.

2. File structure descriptions, which include logical descriptions of the
external files and the records.

3 . Global data descriptions

4. A cross-reference between the requirements and the modules critical
to implementation of the requirements.

h

5. Packaging and software transfer considerations, to include any high
performance requirements or physical memory limitations which may
cause modification in the design. Also, a description of the operating
system characteristics necessary to understand the design.

4.5.3 Other Documents

In addition, for each software unit, the SDG’s will develop a User’s Guide.
Installation Guide, and Test Results Summary document similar to those
documents described above for the overall system.

4.6 Translator Software Units

Documentation for the various TRANSLATOR software units u7ill comply
with the documentation required under 4.5 for the GENERIC softwar(. units.

5.0 Standards, Practices, and Conventions

The GENERIC project will adhere to those particular standards and con-
ventions for the project’s software development life cycle extracted from
Sandia Software Guidelines, Volurne 3, “ Standards. Practices and (hnven-
tions.”[Ref 2.21, and detailed in the GENERIC Project Plan [Ref 2.41. Com-
pliance with these standards is the responsibility of the project leader. and
will be monitored and enforced by the project reviews and inspections.

6.0 Reviews and Inspections

Reviews and code inspections shall be performed at each major project mile-
stone to ensure compliance with this SQAP and to aid early discovery and
correction of software defects and errors prior to release of the software
system.

Documentation of the results of the review or code inspection in a report
which identifies all the deficiencies discovered along with a plan and schedule
for corrective actions is required. Details on the reviews and inspections
are provided in the GENERIC Projcct Plan [Ref 2.41, following the outline
found in Sandiu Software Guidelznes. Volume 3, ‘. Standards, Practices and
Conventions.” [Ref 2.21

The following is a list of the reviews and code inspections required:

1. Software Requirements Review and report.

1

2, Preliminary Design Review and report.

3. Detailed Design Review and report.

4. Software Test Plan Review and Functional Audit.

5. Code inspections and diagnostic reports.

The timjng and conduct of these reviews is provided in the GENERIC
project administrative plan. For each review and inspection, the results are
documented in a report which identifies all deficiencies discovered during
the review, and which provides a plan and schedule for corrective action.

7.0 Software Configuration Management

This section is addressed in detail in the project’s Software Configuration
Management Plan [ref 2.61 which explicitly follows the outline provided in
Sandia Software Guidelines, Volume 4, ‘‘ Configuration Management.”

8.0 Problem Reporting and Corrective Action

This section is addressed in detail in the project’s Software Configuration
Management Plan [ref 2.61.

9.0 Tools, Techniques, and Methodologies

During the design phase, the GENERIC project will employ the VAXBASED
Structured Analysis Tool to create data flow diagrams to rcpresent thc data
exchange relationship within the GENERIC software system and illustrate
the dependency of processes on that data flow. The tool facilitates tlic def-
inition and description of those processes. Following implerrieiitatiori, t2ic
Maintainability Analysis Tool will be used to audit the complexity of the
code developed. These software tools are detailed in the GENERIC Project
Plan [ref 2.41.

The AT&T Inspection Process, as described in Volume 3, Sandia Soft-
ware Guidelines, will be used during all phases. The formal documentation
required by this process will be collected as part of the quality assurance
records.

10.0 Code Control

This section is addressed in detail in the project's Software configuration
Management Plan [ref 2.61.

1

11.0 Media Control

This section is not applicable to this plan. The GENERIC software will be
made available to all interested parties; no environmental controls or offsite
storage will be required.

12.0 Supplier Control

The only outside vendor software required in the GENERIC project is the
commercially available Database Management System. This product has
been in use at Sandia for several years and meets established technical re-
quirements. No additional supplier control is applicable to this plan.

Note: An expluna-
t i on should be given
as to why a n y oJ the
thirteen 1EEE sec-
t ions do not upply.

13.0 Records Collection, Maintenance, and Retention

Hard copies of GENERIC Project documents will be collected to provide
reference data for Org 9800 development techniques. and to document the
software quality techniques of the project. These records will be retained as
outlined in the following table:

1 G E N E R I C Project Record:

Software verification reports
Configuration control records
Test results (complete plus latest)
GENERIC system documentation
All other proi ec t docurnentat ion

Reten t ion Period=
six months
two years
life of system
l i f t of system
life of system
one year

c

14.0 Testing Methodology

Testing will be the primary vehicle for ensuring that the code, when inte- Note:
grated into the software system, perforrris functionally in a manner consis- Thzs 2s iiot curr(Jrit/lj
tent with software requirements. and that it does not perform unintended, one o j the f h i r f c t T I

undesirable functions under reasonable use conditions. In addition, software requzred IEEE s w

testing will be used to verify consistency of code with design specifications. t ions. A n y such 711-

Details on the testing procedures are given in the GENERIC Software Test Jormatzon should b r
added sturtzng u v / h
sectzon 14.0 k

.
Plan [ref 2.51. The Sandia Software Guidelines, Volunie 3 [ref 2.21 provides
general guidelines for testing.

APPENDIX: Project GENERIC Glossary and Acronyms

0 DBMS - database management system

0 FILEWRITER - The GENERIC software unit that converts a vendor
database into a GENERIC file.

0 GENERIC software - The software units PARSER, KERNEL. and
FILE WRITER.

0 GENERIC System - The collection of software units designed to func-
tion together as the graphics file exchange system.

0 KERNEL - The GENERIC software unit consisting of software pro-
cedures that will provide specialized access to the database.

0 Lead Software Engineer - The software professional charged with the
technical leadership and management of the GENERIC project.

0 PARSER - The GENERIC software unit that loads a vendor file into
the database management system.

quality assurance - The planned and systematic actions necessary to
provide adequate confidence that an item is fit for intended use.

0 software - Computer programs, procedures, documentation, and data
pertaining to the operation of a computer system.

0 Software Development Groups (SDG) - The organizations responsible
for the GENERIC software units.

0 SQA - software quality assurance

0 TR,ANSLATOR - The software procedures t,lriat convert the format
generated by a specific graphics system to (or from) the GENERIC
format.

1

W

Appendix B

References
AL84 Department of Energy/Albuquerque Operations Office

DOE/AL Quality Assurance (AL 5700.6B), Quality Enginccring Di-
vision. April 24, 1984.

EPd87 Sandia Engineering Procedures
EP401511, draft February 1987.

IEE84 The Institute of Electrical and Electronics Engineers, Inc.
ANSI IEEE Standard f o r Software Quality Assurance Plans, IEEE Std
730-1984, New York, 1984.

IEE86 The Institute of Electrical and Electronic Engineers, Inc.
IEEE Guide for Software Quality Assurance Planninq. IEEE Std 983-
1986. New York, 1986.

QC85 Department of Energy/Albuquerque Operations
DOE/AL Quality Control Policy (QC-I), Quality Engineering Divi-
sion, Apr 1985.

SQP86 Sandia National Laboratories
Quality Plan, Sandia National Laboratories, Albuquerque, NM. Apr
1986.

SSGv2 Sandia Software Guidelines
Volume 2. Documentation, SAND85-2345, Sandia National Laborato-
ries, Albuquerque. NM, expected printing Dec 1988.

SSGv3 Sandia Software Guidelines
Volume 3, Standards, Practices, and Conventions, SAND85-2346, San-
dia National Laboratories, Albuquerque. NM, Jul 1986.

SSGv4 Sandia Software Guidelines
Volume 4, Configuration Management, SAND85-2347, Sandia National
Laboratories, Albuquerque, NM, expected printing Juri 1988.

SSGv5 Sandia Software Guidelines
Volume 5. Tools, Techniques, and Methodologies, SAND85-2348. San-
dia National Laboratories, Albuquerque, NM, expected printing Jan
1988.

47

t

Appendix C

Glossary and Acronyms
Where possible, definitions in this glossary arc taken from the IEEE Stun-
dard Glossary of Software Engineering Terminology, [IEE83g]. They arc’
included here to provide a single-source dociirricnt for the reader.

ANSI: American National Standards 1ristitut)c

audit: Ai1 indepcmlent review for the purpose of assessing compliance with
software requirements, specificatioiis, basc~lines, standards. procedures,
instructions. codec3, and contractual rcquirernents.

baseline: A specification or product that has beeii fornially reviewed arid
agreed upon. and thereafter serves as the basis for fiirthcr (levclop-
rnent ; changed only through formal change control procedures.

change control: The process by which a (hinge is proposcd. evaliiated.
approved or rejected. scheduled, arid tracked.

configuration control board: The authority responsible for cvaluat-
ing and approving or disapproving proposcd c.iiginecring changes. and
ensuring irnplementation of the approved changes.

configuration management: The process of identifying and defining tho
iterris iii a system. and controlling the rt)lcasr arid cliangc of those iterris
throughout the system life cycle.

DOE: Department of Energy

IEEE: The Institute of Electrical and Electronic Enginwrs. In(,.

milestone: A scheduled event for which sornc project nienibrr or iiiaiiagci

is held accountable and that is used to measure progress.

$A: qiiality assurance

quality assurance: A planned aiid systematic pat tern of all actions 1 1 ~ ~ 3 \ -

sary to provide adeqiiat c confidence that thc it (m or product coiiforriis
to established technical requirc~mc~nts.

quality control: Iiispections of dociinicmts aiid workprotluc*t\ protlucoti
at each milestonc, to dernonstratc if‘ the it ~ r ~ i s are within ipt~cifiictl
criteria.

48

requirement: A condition or capability that must be met by a system or
system component to satisfy a contract, specification, or other formally
imposed document. The set of all requirements forms the basis for
system development.

SQA: soft>ware quality assurance

SQAP: software quality assurance plan

SSG: Sandia Software Guidelines

software: Computer programs, procedures, rules, and associated docu-
mentation and data pertaining to the operation of a computer system.

software maintenance: Modification of a software product after delivery
to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment.

software professional: One who develops or maintains software for oth-
ers.

software quality assurance: [see quality assurance]

software quality assurance plan: The met'hods a project will employ
to assure the documents or workproducts produced and reviewed at
each milestone are of high quality.

software reliability: The ability of a program to perform a required
function under stated conditions for a stated period of time.

system: An integrated whole composed of diverse, interacting specialized
structures and subfunc tions.

validation: The process of evaluating software at the end of the software
development process to ensure compliance with software requirenients.
[see also verification]

verification: The process of determining whether or not the products of a
given phase of the software development cycle fulfill the requirements
established during the previous phase. [see also validation]

WR: war reserve

Note: Page numbers in boldface
reference a subsection on the in-
dexed term. Page numbers in ital-
ics reference a definition of the term.

access,

AL 5700.6B 2
audit 6, 10, 16, 29,4#

physical 20

report 6

baseline 8, 9, 48

change control 15, 48
configuration

control,
control board 6,9,10,3 1-32,4 8

change 15, 48
code 18
media 18
quality 6, 10, 48
supplier 18, 20

design
information 15
review 15

distributing
copies 19

documentation, 19
engineering 15

environment 2
evaluation

of SQAP 27
form, content 28
form, administration 29

execution
of SQAP 26

forms
SQAP administration evalua-

SQAP content evaluation 28
tion 29

implementation 25

management
commitment 25
participation 25

milestone 48

project
records 21

collection 22
maintenance 23
retention 23

QC-1 2
quality assurance 48
quality control 6,10, 4#
quality operations division 10, 29
quality plan 2

requirements 49
review

and audits 16
design 15
schedule 23

schedule,

software 4 9
review 23

maintenance 49
professional 49
quality 1
quality assurance 5.49

50

division 3-6, 10,11,13,14,29,30
evaluation of plan 28
example of plan 34
execution of plan 27
modification of plan 30
plan 49
program 2

reliability 49
standards, practices, and conven-

storage,

system 49

tions 10, 16

physical 19, 20

tools, techniques, and methodolo-
gies 16

validation 8,10, 4 9
verification 8,10, 49

51

..-...I - ... , I ___ -I--. ~-

Distribution:
Sandia Internal:
123 H.L. Crass
1251 T.A. Borkey
1265 P.L. McAllister (2)
1410 P.J. Eicker
1411 R.C. Lennox (2)
1412 S.J. Weissman (2)
1413 Ronald Devries
1522 Bob Reuter
1523 J.H. Biffle
1531 J.M. McGlaun (2)
1556 P.C. Kaestner (2)
2113 J.A. Wisniewski (5)
2113 J.A. Hudson (2)
2124 Dan R. Royalty
2300 J.L. Wirth
2311 H.D. Pruett
2312 Betty P. Chao
2312 Dave D. Neidigk
2312 M.J. Smartt (2)
2314 Donald M. Small (2)
2335 T.J. Allard (2)
2336 C.R. Borgman (2)
2526 Julie Darling
2610 D.C. Jones
2612 D.M. Darsey
2614 A.R. Iacoletti
2614 Philip Campbell
2614 Betty Straba (100)
2620 K.O. Waibel
2621 Manny P. Ontiveros (2)
2621 Peggy Schlesinger (2)
2624 J.R. Schofield, Jr. (2)
2640 E.J. Theriot
2641 L.D. Buxton (2)
2642 P.A. Lemke (2)
2644 R.E. Jones (2)
2800 W .E. Alzheimer

2810 D.W. Doak
2811 T.R. Perea
2811 R.J. Harrison (2)
2811 Lilita Meirans (2)
2811 R.E. Parks (2)
2812 J.F. Jones, Jr. (2)
2812 T.F. Ezell (2)
2812 L.M. Grady (2)
2813 S.K. Fletcher (2)
2813 C.K. Miller (5)
2813 S.L.K. Rountree (5)
2814 P.A. Erickson
2814 M.A. Blackledge (10)
2820 G. Carli
2822 R.S. Kramer
2822 Susan Navarro (5)
2825 Jonathan Lee (2)
2826 A.J. Ahr (2)
2830 G.R. Urish
2830 Jerry D. Stauffer (2)
2833 Joe Lopez
2850 J.L. Tischhauser
2854 Steve Baca
2854 N.J. Nelson (2)
2854 S.C. Babb (5)
3151 R.L. Manhart
3538 B.H. VanDomelen
5100 H.W. Schniitt
5164 Don Schroeder
5164 J. Arlin Cooper
5164 M.W. Sharp (2)
5246 L.M. Desoriier (2)
5253 R.L. Craft
5255 R.D. Halbgewachs
5255 P.W. Harris
5255 Bruce N. Malm (2)
5255 A.L. Yates (5)
5263 R.F. Davis (2)
5268 C.E. Olson

52

.

5268 M. Rodema Mosely
5268 M. Sagartz
6310 R.R. Richards (2)
6316 E.W. Shepherd (5)
6415 F.E. Haskin (2)
6415 L.T. Ritchie (2)
6416 Ginger Wilkinson (2)
6418 John E. Kelly
6418 S.W. Webb (2)
6440 D. Brosseau (2)
7111 James S. Phillips (2)
7200 C.H. Mauney
7201 C.A. Trauth (5)
7233 R.E. Smith
7233 R.M. Axline
7233 S.C. Billups
7233 S.E. Ohrt
7243 B.G. VanBlaricum
7251 Mary E. Prickett (2)
7251 W.P. Thomas
7252 D.P. Patrick (2)
7253 Guy E. Dahms (5)
7253 G.A. Gurule
7254 S.L. Sardalos (2)
7260 J.A. Hood
7262 Frank A. Ross
7262 D.G. Adams (2)
7262 R.B. Ronan (2)
7263 G.W. Mayes (2)
7483 Paul W. Plomp
7521 S.Y. Goldsmith (2)
7524 W.D. Swartz (2)
7525 David N. Harstad
7543 William L. Larson
8235 D.L. Crawford (2)
8274 R.E. Isler (2)
8343 Tim P. Tooman (2)
8474 J.N. Rogers (5)
9013 R.D. Summers (2)

9211 Gayle M. Connor (5)
9211 J.E. Lenberg
921 1 Karen Weber
9212 Bill Jacklin (2)
9212 Janet Carkeet (2)
9213 Chuck Kyger
9221 D.H. Rountree (2)
9224 M.T. McCornack (2)
9224 Merry Peterson (5)
9224 J.C. Rowe (2)
9224 W. J. Slosarik (2)
9241 P.S. Hamilton (5)
9242 L.M. Ford (2)

3141 S.A. Landenberger (5)
3151 W.L. Garner (3)
3154-1 C. H. Dalin (28)

for DOE/OSTI
8024 P.W. Dean

